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Bile acids derived from cholesterol and oxysterols derived
from cholesterol and bile acid synthesis pathways are signal-
ing molecules that regulate cholesterol homeostasis in mam-
mals. Many nuclear receptors play pivotal roles in the regu-
lation of bile acid and cholesterol metabolism. Bile acids
activate the farnesoid X receptor (FXR) to inhibit transcrip-
tion of the gene for cholesterol 7�-hydroxylase, and stimulate
excretion and transport of bile acids. Therefore, FXR is a bile
acid sensor that protects liver from accumulation of toxic bile
acids and xenobiotics. Oxysterols activate the liver orphan
receptors (LXR) to induce cholesterol 7�-hydroxylase and

ATP-binding cassette family of transporters and thus promote
reverse cholesterol transport from the peripheral tissues to
the liver for degradation to bile acids. LXR also induces the
sterol response element binding protein-1c that regulates li-
pogenesis. Therefore, FXR and LXR play critical roles in co-
ordinate control of bile acid, cholesterol, and triglyceride me-
tabolism to maintain lipid homeostasis. Nuclear receptors and
bile acid/oxysterol-regulated genes are potential targets for
developing drug therapies for lowering serum cholesterol and
triglycerides and treating cardiovascular and liver diseases.
(Endocrine Reviews 23: 443–463, 2002)
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I. Introduction

CONVERSION OF CHOLESTEROL to bile acids in the
liver and biliary excretion of cholesterol for eventual

disposal in stool are two major routes for removing excess
cholesterol from the body. Recent studies have shown that
bile acids not only serve as the physiological detergents that
facilitate the absorption, transport, and distribution of lipid-
soluble vitamins and dietary fats, but also are the signaling
molecules that activate nuclear receptors and regulate bile
acid and cholesterol metabolism. In addition, bile acids in-
duce the cytochrome P450 3A (CYP3A) family of cytochrome
P450 enzymes that detoxify bile acids, drugs, and xenobiotics
in the liver and intestine, and also induce hepatocyte apo-
ptosis. Bile acids are synthesized in the liver, excreted into the
bile, reabsorbed in the ileum, and transported back to the
liver via portal circulation to inhibit bile acid synthesis by
suppressing the gene encoding the rate-limiting enzyme,
cholesterol 7�-hydroxylase (CYP7A1) (1). The mechanisms
of bile acid feedback regulation have been studied in animal
and tissue culture models for more than three decades. Re-

Abbreviations: ABCA1, ATP-binding cassette protein A1; ACAT,
acyl-CoA-cholesterol acyltransferase; apo, apolipoprotein; ASBT,
apical sodium-dependent bile acid transporter; BARE, bile acid re-
sponse element; BSEP, bile salt export pump; CA, cholic acid; CAR,
constitutive androgen receptor; CDCA, chenodeoxycholic acid;
CETP, cholesterol ester transfer protein; CM, chylomicron; CoA, co-
enzyme A; CPF, CYP7A1 promoter factor; CTX, cerebrotendinous
xanthomatosis; CYP, cytochrome P450; CYP7A1, cholesterol 7�-
hydroxylase; CYP7B1, oxysterol 7�-hydroxylase; CYP8B1, sterol 12�-
hydroxylase; CYP27A1, sterol 27-hydroxylase; DCA, deoxycholic
acid; DR, direct repeat; FTF, �-fetoprotein transcription factor; Ftz-F1,
Fushi-tarazu factor 1; FXR, farnesoid X receptor; hB1F, hepatitis B
virus enhancer 1 factor; HDL, high density lipoprotein; hFTF, human
FTF; HMG-CoA, 3-hydroxy-3-methylglutaryl CoA; HNF4�, hepato-
cyte nuclear factor 4�; 3�-HSD, 3�-hydroxysteroid dehydrogenase;
IBABP, ileum bile acid binding protein; IDL, intermediate-density
lipoprotein; IR, inverted repeat; JNK, Jun N-terminal kinase; LCA,
lithocholic acid; LDL, low density lipoprotein; LPL, lipoprotein
lipase; LRH, mouse liver-related homolog; LXR, liver X receptor;
MDR1, multidrug-resistant protein 1; NR1, nuclear receptor 1;
MODY, maturity onset diabetes of the young; MRP3, multidrug-
resistant protein-3; NTCP, sodium taurocholate cotransport peptide;
OATP2, organic anion transport peptide 2; PCN, pregnenolone 16�-
carbonitrile; PLTP, phospholipid transfer protein; PPAR, peroxisome
proliferator activated receptor; PXR, pregnane X receptor; RAR, reti-
noic acid receptor; RXR, retinoid X receptor; SF-1, steroidogenic factor
1; SHP, small heterodimer partner; SR-B1, scavenger receptor sub-
class B1; SREBP, sterol response element binding protein; tASBT,
terminal apical sodium-dependent bile acid transporter; VLDL, very
low density lipoprotein.
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cent studies suggest that bile acids are able to activate a bile
acid receptor, farnesoid X receptor (FXR), which regulates
the target genes in bile acid synthesis, transport, and cho-
lesterol metabolism (2–6). Oxysterols are derived from cho-
lesterol and bile acid biosynthetic pathways and are potent
ligands that activate oxysterol receptor, liver X receptor
(LXR), which induces genes involved in reverse cholesterol
transport (7–9). FXR and LXR may coordinately regulate bile
acid synthesis and cholesterol homeostasis (10–13). This re-
view will focus on the molecular mechanisms of nuclear
receptor regulation of bile acid and cholesterol homeostasis.
Diseases caused by bile acid synthesis defects and the po-
tential drug therapies targeted to nuclear receptors for low-
ering serum cholesterol levels will also be discussed.

II. Bile Acid Synthesis and Regulation

A. Bile acid biosynthetic pathways

The conversion of cholesterol to bile acids occurs exclu-
sively in hepatocytes by a cascade of 12 reactions catalyzed
by enzymes located in the endoplasmic reticulum, mitochon-
dria, cytosol, and peroxisomes. Detailed descriptions of the
reactions and enzymes involved in bile acid biosynthetic
pathways can be found in recent reviews (1, 14–17). Figure
1 shows several of the intermediates and important regula-
tory enzymes in two major bile acid biosynthetic pathways.
The main bile acid biosynthetic (classic or neutral) pathway
is initiated by CYP7A1, which is only expressed in the liver,
whereas the alternative (or acidic) pathway is initiated by
sterol 27-hydroxylase (CYP27A1), which is expressed in
many tissues. In the classic pathway, modifications of the
steroid nucleus, including hydroxylation at 7�- and 12�-
positions, epimerization of the 3�-hydroxyl group, and sat-
uration of the steroid nucleus, precede the oxidative cleavage
of a three-carbon side chain. In the alternative pathway,
oxidative cleavage of the side chain precedes the modifica-
tions of the steroid nucleus. Cholic acid (CA) and chenode-
oxycholic acid (CDCA) are two major primary bile acids
found in human bile.

1. The classic or neutral pathway. The classic pathway is also
known as the neutral pathway because it was identified first,
and most intermediates in the pathway are neutral sterols
(18). In humans, this pathway produces CA and CDCA in
roughly equal amounts. CYP7A1, a microsomal cytochrome
P450 isozyme, catalyzes the first and rate-limiting step of the
pathway (19). Next, microsomal 3�-hydroxy-C27-steroid
dehydrogenase/isomerase (3�-HSD) converts 7�-hydroxy-
cholesterol to 7�-hydroxy-4-cholestene-3-one, the common
precursor for both CA and CDCA. Microsomal sterol 12�-
hydroxylase (CYP8B1) converts 7�-hydroxy-4-cholestene-3-
one to 7�,12�-dihydroxy-4-cholesten-3-one (1, 18). Subse-
quently, �4-3-oxosteroid-5�–reductase and 3�-hydroxysteroid
dehydrogenase (HSD) convert these intermediates to 5�-
cholestane-3�, 7�-diol for synthesis of CDCA, and 5�-
cholestane-3�, 7�,12� triol for CA. The steroid side chain of
these diols and triols is subsequently converted to a carboxyl
group by mitochondrial CYP27A1 and leads to the synthesis
of CDCA and CA, respectively (20). These two primary bile

acids are then conjugated with taurine or glycine before
excretion into bile. Under physiological pH, bile acids are
present as sodium salts, referred to as bile salts. The term
“bile acids” will be used throughout this article.

2. The alternative or acidic pathway. The alternative pathway was
originally suggested by the identification of many acidic inter-
mediates, which were not intermediates of the classic pathway
(21, 22). The alternative pathway produces mainly CDCA (23,
24). In this pathway, CYP27A1 converts cholesterol to both
27-hydroxycholesterol and 3�-hydroxy-5-cholestenoic acid
(25). Oxysterol 7�-hydroxylase (CYP7B1) then converts these
two intermediates to 7�,27-dihydroxycholesterol and 3�,7�-
dihydroxy-5-cholestenoic acid, respectively. It is believed that
the same enzymes of the classic pathway catalyze subsequent
modifications of the sterol nucleus (26). Recent studies suggest
that the acidic pathway also produces CA (27–29).

The relative contribution of the acidic pathway to overall bile
acid synthesis is not certain. Metabolites of the acidic pathway
are accumulated in patients with chronic liver diseases and are
an indication of a larger contribution of this pathway to bile acid
synthesis (21). The acidic pathway may contribute as much as
50% of total bile acid synthesis in primary cultures of rat and
human hepatocytes (30). However, the alternative pathway
contributes only less than 18% of total bile acid synthesis in
humans (31). The neutral pathway is highly regulated and is
stimulated by bile fistula or by feeding cholestyramine, a bile
acid-binding resin, whereas the acidic pathway is not induced
as much (32–34). In Cyp7a1�/� mice, bile acid synthesis is
markedly reduced and the acidic pathway may be activated
after weaning to provide 7�-hydroxylated bile acids (35, 36). In
contrast, bile acid synthesis, pool size, and composition are not
altered in Cyp7b1�/� mice (37), and Cyp7a1 expression is in-
creased to maintain bile acid homeostasis. These genetic knock-
out experiments support the suggestion that the neutral path-
way involving CYP7A1 is the major regulated pathway,
whereas the acidic pathway involving CYP7B1 is a constitutive
pathway (37).

B. Regulation of bile acid synthesis and
cholesterol homeostasis

The rate of bile acid synthesis parallels the activity of
CYP7A1, which is the only rate-limiting enzyme of the bile
acid biosynthetic pathway (19). Interruption of enterohepatic
circulation of bile acids by biliary diversion or treatment with
bile acid sequestrants increases the rate of bile acid synthesis
and the activity of CYP7A1 by about 3- to 4-fold. Intraduo-
denal infusion of bile acids inhibits the rate of bile acid
synthesis to the normal level (19). Enterohepatic circulation
of bile acids is the most important physiological mechanism
for controlling the overall rate of bile acid biosynthesis (38).

1. Bile acid feedback regulation of bile acid synthesis. Bile acids
excreted from the liver are reabsorbed in the intestine and
transported back to the liver by a process called enterohepatic
circulation of bile (39, 40). Conjugated bile acids synthesized in
the liver are excreted into the bile canaliculi and stored in the
gallbladder. After each meal, gallbladder contraction releases
bile acids into the intestine for digestion of fats. Portions of CA
and CDCA are converted to the secondary bile acids, deoxy-
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cholic acid (DCA) and lithocholic acid (LCA), respectively, by
7�-dehydroxylase in the bacterial flora. These bile acids, with
the exception of LCA, are efficiently reabsorbed in the ileum

(41) and transported back to hepatocytes via portal venous
circulation (42–44). Bile acids bind to hepatic bile acid-binding
proteins and are transported to canalicular membrane for se-

FIG. 1. Bile acid biosynthetic pathways in the liver. Two major bile acid biosynthetic pathways are shown. Only major regulatory enzymes,
CYP7A1, CYP8B1, CYP27A1, CYP7B1, and 3�-HSD, and their substrates and products are shown.
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cretion into bile (45). This process is repeated several times after
each meal and reabsorbs about 95% of bile acids in humans. The
remaining 5% lost in feces is replenished by de novo bile acid
synthesis. The details of bile acid transport systems in hepato-
cytes and intestine can be found in recent reviews (40, 46–49).

2. Cholesterol homeostasis in the liver. Figure 2 illustrates the
central role that the liver plays in maintaining cholesterol

homeostasis. Major pathways for input and output of cho-
lesterol are shown. Four major cholesterol input mechanisms
in the liver are 1) uptake serum cholesterol esters by a low-
density lipoprotein (LDL) receptor-mediated endocytosis; 2)
reverse cholesterol transport from peripheral tissues to the
liver by the selective uptake of high-density lipoprotein
(HDL) by the scavenger receptor subtype B1 (SR-B1) (50, 51);
3) absorption of dietary cholesterol in intestine and transport
to the liver as chylomicrons (CM) by LDL receptors-medi-
ated mechanism; and 4) de novo synthesis of cholesterol from
acetyl-coenzyme A (CoA).

For cholesterol output, cholesterol esters are assembled
into very low-density lipoproteins (VLDLs) and excreted into
circulation. VLDLs are converted to intermediary density
lipoprotein (IDL) and LDL, and taken up into liver and
peripheral tissues by LDL receptors. Of the cholesterol ca-
tabolized, about 50% is converted to bile acids and 10% is
used for synthesis of steroid hormones. The remaining 40%
is excreted together with bile acids and phospholipids into
bile for disposal in feces. Bile acids are reabsorbed by en-
terohepatic circulation of bile described above.

Hydrophobic bile acids are toxic if accumulated in large
quantities in hepatocytes. Therefore, bile acid synthesis and
transport must be tightly regulated. Cholesterol is important for
synthesis of bile acids, biological membranes, and steroid hor-
mones, and its homeostasis needs to be maintained in tissues.
The liver plays a central role in maintaining bile acid and cho-
lesterol homeostasis. Interruption of the enterohepatic circula-
tion of bile acids leads to an increase in bile acid synthesis and
a reduction of plasma LDL cholesterol concentration (52, 53).
Increased input of cholesterol and decreased output of bile
acids may cause hypercholesterolemia, atherosclerosis, cho-
lestasis, and cholelithiasis in humans (38, 46, 54).

3. Oxysterol regulation of cholesterol homeostasis. Oxysterols are
potent regulators of cholesterol synthesis and lipid metab-
olism (55). Oxysterols are derived from cholesterol, and the
intermediates of the cholesterol and bile acid synthesis path-
ways by either enzymatic or nonenzymatic oxidations (7, 56).
The most abundant oxysterols in human plasma are
27-hydroxycholesterol, 24(S)-hydroxycholesterol, and 7�-
hydroxycholesterol, which are generated predominately by
CYP27A1 in the lung (57), sterol 24-hydroxylase in the brain
(58, 59), and CYP7A1 in the liver, respectively. Another abun-
dant oxysterol, 25-hydroxycholesterol, is synthesized by mi-
crosomal sterol 25-hydroxylase, a noncytochrome P450 en-
zyme (60). Oxysterols regulate cholesterol and fatty acid
syntheses through a mechanism involving sterol response
element-binding proteins (SREBPs) (61–63). When oxysterol
levels are low in cells, SREBP is translocated from endoplasmic
reticulum to the Golgi where the N-terminal 58-kDa fragment
is cleaved by sterol-sensitive proteases, which are regulated by
SREBP cleavage-activating protein. The matured SREBP enters
the nucleus and binds to the sterol response elements of LDL
receptor, 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase,
and other genes in cholesterol and fatty acid synthesis (63–67).
In liver and peripheral tissues, CYP7B1 hydroxylates 27-
or 25-hydroxycholesterol, whereas another 7�-hydroxylase,
CYP39A1, hydroxylates 24-hydroxycholesterol (68). It has been
reported that the recombinant human CYP7A1 can function as

FIG. 2. Bile acid synthesis and cholesterol homeostasis. Liver synthe-
sizes cholesterol from acetyl-CoA, and HMG-CoA reductase is the rate-
limiting enzyme of the pathway. The cholesterol pool in the liver is
contributed by four input mechanisms. Serum cholesterol esters (CE)
carried by LDL and IDL are taken up into the liver by LDL receptor
(LDLR) or LDL receptor-related protein (LRP)-mediated endocytosis.
Oxidized LDL is taken up into peripheral tissues by scavenger receptors
SR-A1 and CD34. CEs are hydrolyzed to free cholesterol by cholesterol
ester hydrolase (CEH) in peripheral tissues. Excess cholesterol is ef-
fluxed from peripheral tissues by ABCA1 transporter to form HDL.
Lecithin-cholesterol acyltransferase (LCAT) converts cholesterol to CE,
which is selectively taken up into the liver by HDL receptor, SR-B1.
Dietary free cholesterol (FC) is absorbed into intestine and is reesterified
to CEs by acyl-CoA-cholesterol acyltransferase 2 (ACAT2). CEs, ApoB48,
and triglycerides are assembled to form chylomicron (CM). Triglycerides
in CM are hydrolyzed by lipoprotein lipase (LPL) in the capillary of the
adipose and muscle tissues to form free fatty acids, and CM is converted
to chylomicron remnants (CMR). CEs in CMRs are taken up into liver
by LDL receptor and LRP (apoE receptors). Two mechanisms are in-
volved in output of cholesterol. Of the daily cholesterol catabolized, about
50% is converted to bile acids, which facilitate the excretion of 40%
cholesterol into bile. The canalicular transport system is illustrated in
detail in Fig. 4. Bile acids, cholesterol, and phospholipids form mixed
micelles in the gallbladder (not shown), and are secreted into the intes-
tine after each meal. About 95% of the bile acids are reabsorbed in the
ileum, excreted into portal circulation, and up-taken into hepatocytes by
sodium-dependent taurocholate cotransport peptide (NTCP). CEs, tri-
glycerides, and ApoB100 are assembled to form VLDL in the liver. VLDL
excreted in the serum is subsequently converted to IDL, LDL, and oxi-
dized LDL. They are taken up by scavenger receptors, SR-A1 or SR-B1,
into macrophages for disposal or into liver or adrenal for synthesis of bile
acids or sex hormones.
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an CYP7B1 of 20S-, 24-, 25-, or 27-hydroxycholesterol (69, 70).
Conversion of monohydroxycholesterols to dihydroxycholes-
terols reduces the toxicity of monohydroxyl oxysterols. In ath-
erosclerotic plaques, 27-hydroxycholesterol, 7-ketocholesterol,
and 7�-, and 7�-hydroxycholesterol are the most abundant
oxysterols, which cause foam cell formation from macrophages
and lead to atherosclerosis in humans (56). Some oxysterols in
peripheral tissues are excreted to circulation, transported to the
liver, and converted to bile acids. This is a process analogous to
reverse cholesterol transport and has been suggested as a de-
fense against atherosclerosis in humans (71, 72).

C. Bile acid synthesis deficiency

1. Inborn errors of bile acid biosynthesis. Several inborn errors of
bile acid synthesis have been described in infants and children
with various clinical presentations including advanced liver
diseases, neonatal hepatitis, progressive cholestasis, and biliary
atresia (73–75). Primary defects in bile acid synthesis may result
in decreased bile formation, malabsorption of fat-soluble vita-
mins and fats, and accumulation of toxic, abnormal steroid
intermediates in the liver, which may interfere with bile acid
transport processes and lead to cholestasis and cirrhosis (76).
The primary defects in bile acid biosynthesis are the defects in
modifications of the sterol nucleus, including 3�-HSD (77–79)
and �4-3-oxosteroid-5�-reductase deficiencies (80, 81), and the
defects in side-chain oxidation due to CYP27A1 gene mutations
(82). Defects in peroxisome biogenesis and enzymes in perox-
isomal �-oxidation may manifest as the secondary defect in bile
acid synthesis, including Zellweger syndrome and related in-
fantile Refsum disease and neonatal adrenoleukodystrophy
(83). A defect in de novo cholesterol synthesis also causes the
secondary defect in bile acid synthesis, the Smith-Lemli-Opitz
syndrome due to a defect in 7-dehydrocholesterol �7-reductase
(84, 85). Defects in bile acid transporters or 3�-HSD cause pro-
gressive familial intrahepatic cholestasis (40, 46, 74, 77).

2. Deficiency of 7�-hydroxylases. Mice deficient in Cyp7a1 ac-
tivity have been obtained by knockout of the Cyp7a1 gene
(35). These mice display a complex phenotype including oily
coats, hyperkeratosis, vision defects, and behavioral irregu-
larities, which are consistent with malabsorption of vitamins
E and D3. Most Cyp7a1�/� mice died within 18 d; 40% of
them died between d 1 and 4, and 45% died between d 11 and
18. Vitamin supplement to nursing mothers prevented
deaths in the early period, and bile acid supplement pre-
vented deaths in the later period. However, several 7�-
hydroxylated bile acids were detected in the bile and stool of
adult Cyp7a1�/� mice. This was explained by the expres-
sion of hepatic CYP7B1 after weaning and accounted for the
synthesis of abnormal 7�-hydroxylated bile acids in these
mice. The newborn Cyp7a1�/� mice developed neonatal
cholestasis, which may be due to accumulation of monohy-
droxylated bile acids, 3�-hydroxy-5-cholenoate and 3�-
hydroxy-5�-cholanoate, and 27-hydroxycholesterol (86). An
inherited deficiency of CYP7A1 has not been described in the
literature (see Note Added in Proof, no. 1).

The CYP7A1 is a candidate gene for familial hypertriglyc-
eridemia (87), gallstone disease (88–90), and hypercholes-
terolemia (52, 91). Several single-stranded conformation

polymorphisms of the CYP7A1 have been identified (92).
Polymorphisms in the 5�-flanking region and coding region
were reported (93, 94). Genetic linkage analysis indicates a
significant linkage between CYP7A1 and high plasma LDL-
cholesterol concentrations (95). Two polymorphisms in the
5�-flanking region (�278C3A and �554C3T) may contrib-
ute to heritable variation in plasma LDL-cholesterol concen-
trations. The �278C alleles are associated with increased
plasma LDL cholesterol concentration.

Setchell et al. (96) reported an inborn error of bile acid
metabolism due to a defect of CYP7B1 in a child with severe
neonatal cholestasis and cirrhosis. The absence of primary
bile acid conjugates and accumulation of 3�-hydroxy-�5-
cholenoic acids, the products of the acidic pathway, in serum
and urine indicated a defect in 7�-hydroxylation. In addition,
the 27-hydroxycholesterol levels were 4500-fold higher than
normal; however, there were no 7�-hydroxylated bile acids.
Neither CYP7A1 nor CYP7B1 activities were detectable.
Analysis of the CYP7B1 identified a C-to-T mutation in exon
5, which converts Arg388 to a premature termination codon.
The mechanism of liver injury in this patient is likely due to
the accumulation of high levels of hepatotoxic monohy-
droxylated bile acids. These monohydroxylated bile acids
may inhibit bile acid transport across canalicular membranes
and reduce bile flow. There is no mutation in the coding
exons of the CYP7A1 gene in this patient. It is possible that
CYP7A1 may not be expressed in the neonatal human liver,
and bile acid synthesis in early human development may
proceed mainly via the acidic pathway (96).

3. Deficiency of CYP27A1. Mutations of the CYP27A1 have
been found in patients with cerebrotendinous xanthomatosis
(CTX), a rare autosomal recessive defect of cholesterol me-
tabolism manifested by tendon xanthomatosis, progressive
neurological dysfunction, accumulation of cholesterol in the
tissues, premature atherosclerosis, osteoporosis, and choles-
terol gallstones (18, 82, 97). The defect leads to excessive
accumulation of 7�-hydroxycholesterol, 7�-hydroxy-4-
cholesten 3-one, 5�-cholestane-3�, 7�, 12�-triol, cholesterol,
and cholestanol. The synthesis of bile acids, particularly
CDCA, is reduced and leads to up-regulation of CYP7A1 and
the accumulation of both 7�-hydroxycholesterol and 7�-
hydroxy-4-cholesten-3-one. The precursor 7�-hydroxy-4-
cholesten-3-one is converted to cholestanol. Despite the nor-
mal circulating cholesterol levels in CTX patients, they
develop xanthoma and premature atherosclerosis. This may
be due to the reduced elimination of cholesterol from mac-
rophages by CYP27A1. Mutations in the CYP27A1 of CTX
patients have been identified (82, 98). CDCA therapy has
been used to prevent or reverse neurological symptoms as-
sociated with this disease. Despite the link of CYP27A1 mu-
tations to CTX, the etiology of this disease is still not known.
Disruption of the Cyp27a1 gene in mice markedly reduced
bile acid synthesis and fecal bile acid excretion by 80% (99).
However, Cyp27a1�/� mice do not accumulate cholestanol
and do not exhibit the progressive neurological defects ob-
served in human CTX patients. The Cyp27a1�/� mice have
enlarged livers and kidneys and have increased triglyceride
levels, fatty acid synthesis, cholesterol absorption, and cho-
lesterol synthesis (100). SREBP expression in livers of
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Cyp27a1�/� mice is elevated. Feeding CA reverses hepa-
tomegaly and hypertriglyceridemia. It is concluded that
CYP27A1 plays an important role in triglyceride metabolism.

III. Nuclear Hormone Receptor Regulation of Bile
Acid Synthesis

Bile acid synthesis is highly regulated by many factors,
including diets, nutrients, bile acids, and hormones, mainly
by regulating CYP7A1 gene transcription (1). Many liver-
specific transcription factors, mostly nuclear receptors, have
been found to bind to and play important roles in regulating
CYP7A1 transcription (1, 101–108). Analysis of nucleotide
sequences of two bile acid response elements (BAREs) iden-
tified in the rat CYP7A1, BARE-I (109) and BARE-II (110),
revealed many AGGTCA-like repeating sequences. Chiang
and co-workers (108) first reported that these hormone re-
sponse elements in the BAREs bound retinoic acid receptor
(RAR�), chicken ovalbumin upstream promoter-transcrip-
tion factor II (111, 112), hepatocyte nuclear factor 4� (HNF4�)
(108, 112), and peroxisome proliferator-activated receptor �
(PPAR�) (113). They suggested that nuclear receptors might
be involved in regulation of basal transcription as well as bile
acid feedback regulation of the CYP7A1 gene (1, 109, 110).
Subsequently, the rat CYP7A1 was identified as the first
target gene of oxysterol receptor, LXR (9), and bile acid
receptor, FXR (4–6). Further studies also identified pregnane
X receptor (PXR), �-fetoprotein transcription factor (FTF),
and small heterodimer partner (SHP) as the bile acid-regu-
lated nuclear receptors. Nuclear receptors involved in bile
acid and cholesterol metabolism are described below.

A. Structure and function of nuclear hormone receptors

Nuclear receptors have a typical modular structure (Fig.
3), which contains a highly conserved DNA-binding domain
in the N-terminal region and a moderately conserved ligand-
binding domain in the C-terminal region. Ligand-indepen-
dent activation function-1 and ligand-dependent activation
function-2 are located in the N-terminal and C-terminal re-
gions, respectively. Two cysteine-coordinated Zn2� finger
motifs located in the DNA-binding domain are directly in-
volved in DNA binding and dimerization. The E region is
also involved in dimerization and coregulator interaction.
Nuclear receptors bind to the consensus hormone response
elements located in genes. Upon ligand binding, nuclear
receptors undergo conformational changes to release core-
pressors and recruit coactivators to bind to the activation
function-2 helix (114, 115).

Classic steroid hormone receptors, i.e., glucocorticoid re-
ceptor, mineralocorticoid receptor, androgen receptor, and
progesterone receptor, bind palindromic AGAACAN3-
TGTTCT sequence (116), whereas estrogen receptors and
nonsteroid hormone receptors bind to the AG(G/T)TCA-like
repeats. The binding specificity of the dimeric receptor is
determined by nucleotide spacing between two half-sites,
which are arranged as a direct repeat (DR), inverted repeat
(IR), or everted repeat (ER). LXR, FXR, PPARs, RARs, and
PXR bind to their response elements as heterodimers with
retinoid X receptor (RXR). The HNF4� homodimer binds to

the DR1 sequence, whereas the NR5A2 family monomeric
receptors, i.e., human FTF (hFTF), CYP7A1 promoter factor
(CPF), and mouse liver-related homolog (LRH) bind to an
extended monomeric site, i.e., TCAAAGGTCA. The SHP, a
negative nuclear receptor, does not bind to DNA because it
lacks a DNA-binding domain.

B. Nuclear receptors involved in regulation of genes in bile
acid synthesis

Nuclear receptors that have been identified to regulate
genes in bile acid synthesis pathways and cholesterol me-
tabolism are listed in Table 1 and described in detail below.
These nuclear receptors are selectively expressed in the en-
terohepatic and peripheral tissues involved in bile acid syn-
thesis, absorption, and transport, as well as cholesterol and
lipoprotein transport (13). The NR1 family of nuclear recep-
tors, including PXR, PPAR, LXR, and FXR, are activated by
micromolar concentrations of bile acids, lipids, or steroids,
which are 1000-fold higher than that for activation of the
classic steroid hormone receptors, but are within the phys-
iological or pathological concentrations.

1. Retinoic acid receptor (RAR) (NR1B1) and RXR (NR2B1).
Retinoids play an important role in regulation of cell growth,

FIG. 3. The general structures of nuclear hormone receptors. Upper
figure shows the domain structure of a nuclear receptor. It contains
activation function domain 1 (AF1), DNA binding domain (DBD),
hinge region (D), ligand binding domain (LBD), and activation func-
tion domain 2 (AF2). With the exception of estrogen receptors (ERs),
all classical steroid hormones receptors, i.e., glucocorticoid receptor
(GR), mineralocorticoid receptor (MR), progesterone receptor (PR),
androgen receptor (AR), bind to the palindromic repeating sequence,
AGAACAN3TGTTCT. ERs bind to a direct repeat (DR) of the AG-
GTCA motif. Nonsteroid receptors bind to the DR, inverted repeat
(IR), or everted repeat (ER) spacing by one to five nucleotides. LXRs,
FXR, PPARs, retinoic acid receptors (RARs), and PXR form het-
erodimers with RXRs and bind to DR, ER or IR sequences as indi-
cated. HNF4� binds to DNA as homodimers. NR5A2 monomeric re-
ceptors, �-FTF, CPF, and LRH bind to an extended half-site preceded
by a A/T-rich sequence.
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morphogenesis, differentiation, and homeostasis through acti-
vation of RARs (RAR�, RAR�, RAR�) and RXRs (RXR�, RXR�,
RXR�) (117, 118). RARs are activated by all-trans-retinoic acid
and 9-cis-retinoic acid, whereas RXRs are activated by 9-cis-
retinoic acid (119). RXR is a common heterodimer partner of a
subgroup of nuclear receptors, including LXRs, FXR, PPARs,
and PXR (116). RXR-selective ligands (rexinoids) activate RXR
heterodimers, which can be further activated by respective
ligands of its heterodimer partners.

RAR�/RXR� has been shown to bind to a DR5 motif and
stimulates rat Cyp7a1 transcription (108, 120). Liver-specific
disruption of Rxr� in mice alters the expression of Cyp7a1,
ApoaI, and ApocIII genes in liver (121). Cyp7a1 mRNA levels
increase more than 8-fold in Rxr��/� compared with wild-
type mice. This suggests that Cyp7a1 expression in the liver
is under negative control mediated predominately by RXR�
and its partners FXR and PPAR�. These two nuclear recep-
tors negatively regulate CYP7A1 transcription. When fed a
diet high in cholesterol, Cyp7a1 mRNA expression levels
increase less than 2-fold in Rxr��/� mice, much less than
the 4- to 5-fold increase in wild-type mice. This implies that
the inhibitory effect, presumably by FXR and PPAR�, must
dominate over the stimulatory effect by LXR� (122). This
study reveals that RXR� is involved in diverse physiological
pathways regulating cholesterol, bile acids, and fatty acids,
as well as steroid metabolism and homeostasis.

2. LXR (NR1H3). NR1H3 subfamily receptors are activated
by oxysterols (8, 123, 124). LXR has two isoforms, LXR� (or

RLD-1) (123, 125) and LXR� (UR, NER, RIP15, and OR-1)
(126–129). LXR� is expressed in liver, spleen, adipose tissue,
lung, and pituitary, whereas LXR� is expressed ubiqui-
tously. Many oxysterols have been identified as the ligands
of LXR� (130). Among naturally occurring oxysterols, 22
(R)-hydroxycholesterol, 24 (S)-hydroxycholesterol, and 24
(S), 25-epoxycholesterol are the most potent LXR ligands.
However, the physiological relevance of these oxysterols as
the LXR ligands is not certain. The most abundant oxysterol
in circulation, 27-hydroxycholesterol, has been shown to be
a LXR ligand and may be the more relevant natural LXR
ligand (131). In addition, 6�-hydroxy bile acid analogs and
cholestenoic acid have been identified as the selective ligands
of LXR� (132, 133).

LXR can act as either a positive or a negative regulator by
binding different metabolites of the mevalonate pathway (134).
LXR binds to a DR4 and stimulates rat CYP7A1 transcription (9).
In Lxr��/� mice, the Cyp7a1 mRNA level is expressed nor-
mally in the liver, but is not stimulated by a high-cholesterol diet
as in the wild-type mice (122), which leads to massive accu-
mulation of cholesterol in the liver. Lxr� apparently is unable
to compensate for Lxr� deficiency in Lxr��/� mice. It was
concluded that LXR might function as a cholesterol sensor,
which stimulates Cyp7a1 expression to convert excess choles-
terol to bile acids in response to high cholesterol (8, 9). However,
LXR� has much less effect on hamster and human CYP7A1,
which lacks a DR4 motif (109). Therefore, the rat and mouse are
unique in that they have the ability to efficiently convert excess

TABLE 1. Nuclear receptors and target genes involved in bile acid and cholesterol homeostasis

Receptor Target genes Functions Ref.

1. RAR/RXR 1CYP7A1 (rat) Bile acid synthesis 108
2. LXR 1CYP7A1 (rat, mouse) Bile acid synthesis 9

1SREBP-1c Lipogenesis 135
1ABCA1, ABCG1 Cholesterol efflux 139
1CETP Reverse cholesterol transport 150
1ApoE Lipoprotein metabolism 149
1LPL Lipoprotein metabolism 151
1LXR Cholesterol sensor 257

3. FXR 2CYP7A1, CYP8B1, CYP27A1 Bile acid synthesis 4–6
1SHP Nuclear receptor inhibitor 2, 3
1BSEP Liver bile acid transport 160
1IBABP Intestine bile acid binding 6, 159
1PLTP Reverse cholesterol transport 161
1ApoCII LPL activator 162

4. PPAR� 2CYP7A1 Bile acid synthesis 113
1CYP8B1 (rat) Bile acid synthesis 172
1LXR Oxysterol sensor 174

5. HNF4� 1CYP7A1 Bile acid synthesis 108
1CYP8B1 Bile acid synthesis 157
1CYP27A1 Bile acid synthesis Chen and Chianga

1FTF Liver gene expression 202
6. FTF 1CYP7A1 (mouse) Bile acid synthesis 2, 3

2CYP7A1 (human) Bile acid synthesis 155
1CYP8B1 (rat) Bile acid synthesis 258
2CYP8B1 (rat) Bile acid synthesis 184
1SHP Nuclear receptor inhibitor 205
1HNF4� Lipid metabolism 202

7. SHP 2CYP7A1 Bile acid synthesis 2, 3, 155
2CYP8B1 (rat) Bile acid synthesis 157, 258
2CYP27A1 Bile acid synthesis Chen and Chianga

8. PXR 2CYP7A1 Bile acid synthesis 223
1CYP3A Sterol and bile acid hydroxylation 223, 225

a Chen and Chiang, unpublished results.
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cholesterol to bile acids by LXR�-mediated stimulation of
Cyp7a1 transcription. The role of LXR in regulation of CYP7A1
in humans remains elusive. In Lxr��/� mice, Srebp-1 and
stearyl-CoA desaturase mRNA are reduced, suggesting that
LXR plays a role in regulating triglyceride synthesis (122). This
is confirmed by the identification of an LXR response element
in SREBP-1c gene (135). Endogenous oxysterols derived from
mevalonate pathway, most likely 24(S), 25 epoxycholesterol,
activates LXR� and induces SREBP-1c, which stimulates lipo-
genesis and leads to hypertriglyceridemia (136). This may ex-
plain why LXR-selective ligands induce SREBP-1c and hyper-
triglyceridemia in mice and hamsters (137). Disruption of Lxr�
does not result in accumulation of cholesterol esters on a high-
cholesterol diet as was observed in Lxr��/� mice (138).

Wild-type mice treated with a rexinoid, LG268, exhibit
marked changes in cholesterol homeostasis including inhi-
bition of intestinal cholesterol absorption and repression of
bile acid synthesis (139). The observation that LG268 reduces
Cyp7a1 mRNA levels is consistent with the report that
CYP7A1 gene transcription is repressed by LG268 in trans-
fection assays in HepG2 cells (140), and that the negative
effect of RXR�/FXR must dominate over the positive effect
of RXR�/LXR� (121). Interestingly, the levels of mRNA hy-
bridized with Abca1 cDNA probe in the intestine are in-
creased. These authors suggest that rexinoids prevent the
accumulation of cholesterol in liver and serum by both de-
pleting bile acids, thus reducing intestinal reabsorption of
cholesterol, and by Lxr induction of Abca1 transporter that
efflux cholesterol from enterocytes. ATP-binding cassette
transporter type A1 (ABCA1) functions as a cholesterol and
phospholipid efflux regulator involved in HDL synthesis.
Mutations of the ABCA1 gene have been identified in Tangier
disease patients (141). However, the identity of ABCA1 trans-
porter as a cholesterol efflux regulator in the intestine has not
been firmly established. It has been reported that knockout
of Abca1 gene in mice reduces intestinal cholesterol absorp-
tion (142). In complete contradiction, another laboratory re-
ported increase of cholesterol absorption by ablation of the
Abca1 gene (143). Recently, studies of sitosterolemia, an au-
tosomal recessive disorder characterized by an increased
intestinal absorption and decreased biliary excretion of di-
etary sterols, hypercholesterolemia, and premature coronary
atherosclerosis, have identified mutations in the genes cod-
ing for ABCG5 and ABCG8 half-transporters. These trans-
porters function as biliary sterol efflux regulators that limit
intestinal absorption and promote biliary excretion of plant
sterols (sitosterols) (144, 145). It is not known whether the
same ABC transporters also regulate intestinal cholesterol
absorption.

Several genes involved in reverse cholesterol transport are
regulated by LXRs. Both Lxr� and Lxr� regulate mouse
Abca1 gene involved in cholesterol efflux in peripheral tis-
sues (146, 147), human macrophage White protein (ABCG1),
and the murine homolog Abc8 (148). LXR also controls lipid-
induced expression of the apolipoprotein E (ApoE) gene in
macrophages and adipocytes (149), the human cholesterol
ester transfer protein (CETP) that mediates the exchange
of cholesterol esters for triglycerides between HDL and
triglyceride-rich lipoproteins (150), and the lipoprotein
lipase (LPL) gene involved in hydrolysis of triglycerides car-

ried by VLDL and CM (151). Interestingly, LXR� regulates its
own synthesis in macrophages, but not in adipocytes, hepa-
tocytes, and other cell types (152).

3. FXR (NR1H4). FXR (also named RIP14 and HRP1) was
isolated by low-stringency screening of a liver cDNA library
using oligonucleotides directed to the conserved DNA-bind-
ing domain of nuclear receptors (153) and by its ability to
heterodimerize with RXR using yeast two-hybrid screening
(128). FXR is closely related to the Drosophila ecdysone re-
ceptor and preferentially binds to an IR1 motif (128, 153). FXR
and LXR are closely related and belong to the same NR1H
subfamily of nuclear receptors. FXR is highly expressed in
the liver, intestine, adrenal, and kidney (128, 153). Farnesol,
juvenile hormone III, all-trans-retinoic acid, and TTNPB ac-
tivate FXR at high concentrations (154). Recently, bile acids
have been identified as the endogenous ligands for FXR
(4–6). The hydrophobic bile acid, CDCA, is the most effective
activator of FXR, with an EC50 of about 10–20 �m, tested in
kidney CV1 cells (6). The secondary bile acids, LCA and
DCA, are less effective, and hydrophilic bile acids, ursode-
oxycholic acid, and muricholic acids, are inactive.

When assayed in liver-derived cell lines, bile acid/FXR
repressed CYP7A1 (4, 6, 140, 155), CYP27A1 (156), CYP8B1
(157), and NTCP gene transcription (158). In human embry-
onic kidney 293 cells, however, bile acids and cotransfection
of FXR had no effect on CYP7A1 transcription. The FXR
binding sequence IR1 is not present in the CYP7A1 gene and
FXR does not bind to the BARE-II of CYP7A1 gene. Chiang
et al. (140) suggested that FXR suppressed CYP7A1 transcrip-
tion by an indirect mechanism involving other liver-specific
factors (Section IV.A). It has been reported that FXR activates
target genes by binding to the IR1 motifs in genes encoding
ileum bile acid binding protein (IBABP) (6, 159), canalicular
bile salt export pump (BSEP) (160), phospholipid transport
protein (PLTP) (161), and ApoCII (162). These findings are
consistent with elevated serum bile acids, cholesterol and
triglycerides, reduced bile acid pool and fecal bile acid se-
cretion, and lack of bile acid inhibition of Cyp7a1 expression
in fxr�/� mice (163). These observations suggest that FXR
plays a key role in lipid metabolism.

4. PPAR� (NR1C1). Three forms of PPAR, �, �, and � (or �),
have been identified (164). PPAR� is expressed in the liver,
heart, and adipose tissues (164, 165), all of which have an
active fatty acid �-oxidation pathway. Fatty acids, eico-
sanoids, and hypolipidemic agents are ligands of PPARs
(166, 167). PPAR� is highly expressed in adipose tissues.
PPAR� (or �) is expressed in most tissues. Fibrates are hy-
polipidemic drugs that affect many genes in lipid metabo-
lism by activation of PPAR (164, 168).

Bile acid synthesis and pool sizes are reduced in gallstone
and hypercholesterolemia patients treated with certain fibrates
(169, 170). The PPAR� ligand, Wy14,643, suppresses CYP7A1
mRNA levels and CYP7A1 luciferase reporter activity in HepG2
cells (113). A functional PPAR�-responsive element has been
mapped to the DR1 in BARE-II, which is also a HNF4� binding
site. However, PPAR�/RXR� does not bind to this DR1 motif.
It appears that PPAR� interferes with HNF4� activation of the
CYP7A1 by reducing the amount of HNF4� expressed (113,
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171). Fibrate treatment changes bile acid composition by in-
creasing CA and decreasing CDCA synthesis. This may be
because PPAR� stimulates CYP8B1 activity and increases CA
synthesis in the rat (172). However, PPAR� binds to the rat
CYP8B1 gene rather weakly. In Ppar��/� mice, inhibitory
effects of fibrates on bile acid synthesis and Cyp7a1 and
Cyp27a1 expression were abolished (173).

PPAR� appears to mediate fatty acid stimulation of LXR�
expression by binding to several PPAR response elements lo-
cated in the 5�-upstream sequence of the LXR� gene (174).
PPAR� has been shown to induce LXR�, which then induces
ABCA1 and ABCG1 expression in macrophages (149, 175).
These findings suggest that the PPAR-LXR-ABC1 cascade is
involved in cholesterol efflux in macrophages. Bile acids have
been shown to antagonize PPAR� activity; however, the phys-
iological role of bile acids on PPAR regulation is not clear (176).

5. HNF4� (NR2A1). HNF4� is the most abundant orphan
nuclear receptor expressed in the liver. HNF4� homodimer
binds to the DR1 motif and regulates the liver-specific ex-
pression of many genes involved in lipoprotein metabolism,
including ApoAI, ApoB, and ApoCIII (177, 178), and glucose
metabolism (179, 180). HNF4� has constitutive activity and
is able to transactivate genes without ligand binding (181).
Fatty acyl-CoA thioesters have been shown to activate
HNF4�; however, the physiological relevance of these li-
gands has been questioned (182). HNF4� binds to a DR1
sequence in the BARE-II and stimulates rat CYP7A1 promot-
er/reporter activity (108, 112). Mutation of the HNF4� bind-
ing site markedly reduced CYP7A1 promoter activity, indi-
cating that HNF4� is crucial for basal level transcription (108,
112, 183). HNF4� binding sites have also been identified in
the CYP8B1 (157, 184) and CYP27A1 genes. HNF4� has been
shown to mediate bile acid repression of CYP8B1 transcrip-
tion (157, 184). HNF4� activity is also regulated by posttran-
scriptional mechanisms, i.e., phosphorylation of the DNA-
binding domain of HNF4� by protein kinase A reduced
HNF4� transactivation activity (185). Bile acids or TNF� has
been shown to inhibit the transactivation potential of HNF4�
via MAPK cascade (186).

Mutations of the HNF4� gene have been linked to matu-
rity onset diabetes of the young (MODY1) (187, 188). HNF4�
is an upstream regulator of HNF1� gene, the mutation of
which has been linked to MODY3 (189, 190). Disruption of
Hnf4� in mice is embryonic lethal, because HNF4� is critical
for early liver development and differentiation. Liver-
specific conditional disruption of the Hnf4� gene results in
marked accumulation of lipids in the liver, reduction of se-
rum cholesterol and triglycerides, and accumulation of bile
acids in serum. These phenotypes may be explained by re-
duction of mRNA levels for Cyp7a1, Hnf4�, ApoaII, ApocIII,
Apob100, Ntcp (SLC10A1), Oatp1 (SLC21A1), and microso-
mal triglyceride transport protein (191). This is consistent
with the important role that HNF4� plays in basal transcrip-
tion of CYP7A1 and underscores the importance of this nu-
clear receptor in regulation of lipoprotein metabolism.

6. FTF (NR5A2). The Fushi-tarazu factor-1 (Ftz-F1) family of
monomeric nuclear receptors plays important roles in ste-
roidogenesis, liver growth, endocrine development, and dif-

ferentiation (192, 193). Two Ftz-F1 genes have been identi-
fied. Ftz-F1� (NR5A1) was first identified in Drosophila as a
factor that activates the homeobox gene, fushi tarazu (194). A
mouse homolog, steroidogenic factor 1 (SF-1), was first
cloned from an adrenal gland cDNA library (195). The Ftz-
F1� (NR5A2) gene encodes �-FTF and its homologs, rat FTF
(196), human CPF (197), hepatitis B virus enhancer 1 factor
(hB1F) (198), human FTF (hFTF) (199), mouse LRH (200),
Xenopus laevis xFF1 (200), and the zebra fish (zFF1) (201).
These NR5A2 variants differ in their N-terminal amino acid
sequences and C-terminal truncation due to differential pro-
moter usage and alternative mRNA splicing (201). All hFTFs
lack a sequence corresponding to exon 2 of mouse FTF. hFTF
is similar to CPF variant 1 and hB1F2 (541 amino acid res-
idues) (202). CPF (495 amino acids) is identical with hB1F
(198); they lack a sequence corresponding to both exons 2 and
3 of mouse FTF. CPF variant 2 is a truncated form (323 amino
acid residues) lacking C-terminal 172 amino acid residues of
ligand-binding domain and AF2 domains and is similar to
hFTFs (199). FTF is the name recommended by the Genome
Database Nomenclature Committee, and it is used here un-
less specified otherwise.

FTF is expressed in liver, intestine, and pancreas, and is
most related to SF-1 expressed in steroidogenic tissues (203).
FTF has intrinsic transcriptional activity and its ligand has
not been identified. FTF binding sites have been identified in
SF-1 (204), SHP (205), HBV (206), HNF3�, HNF4�, and
HNF1� genes (202). The binding site for FTF in human
CYP7A1 has been mapped to –134TCAAGGCCA-126 (197),
which overlaps with the HNF4�-binding site (-144TGGACT-
tAGGTCA-132) by three nucleotides (underlined). In rat
CYP8B1, two FTF binding sites are identified (207). Embed-
ded in the FTF site is a HNF4� binding site (184). In human
CYP8B1, there is an overlapping HNF4� and FTF binding site
(157). FTF is a weak transcription factor that, when trans-
fected at high concentration, stimulates CYP7A1 reporter
activity by about 2-fold in nonliver cells (197). It has been
suggested that FTF functions as a competence factor for sterol
regulation of mouse Cyp7a1 (2) and human CETP gene (208)
by LXR. It is interesting that bile acids could induce FTF
mRNA expression in rat livers and HepG2 cells (155, 184) and
functioned as a repressor that inhibited human CYP7A1 and
rat CYP8B1 transcription when assayed in HepG2 cells (155,
157, 184). Thus, FTF may directly inhibit rat CYP7A1 and
human CYP8B1 in response to bile acids. The inhibitory effect
of FTF is likely due to competition for HNF4� binding to the
overlapping binding sites in the BAREs. Bile acids also in-
duce FTF mRNA expression in the intestine (209). It is in-
teresting that FTF induces the multidrug-resistant protein-3
(MRP3) gene involved in excretion of bile acids across basal
lateral membrane into portal blood, and FXR does not reg-
ulate MRP3 gene (209). Thus, FTF may play a direct role not
only in feedback inhibition of bile acid synthesis but also in
stimulation of bile acid transport and absorption in the in-
testine. FTF gene transcription is regulated by GATA and
basic helix-loop-helix transcription factors (202). FTF, in turn,
regulates HNF4� and HNF1� gene transcription. Hence, FTF
is an upstream regulator of the genes involved in early liver
development. FTF may protect liver and intestine from cy-
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totoxicity of bile acids during the development of the gas-
trointestinal tract.

7. SHP (NR0B2). Using the mouse nuclear receptor, consti-
tutive androgen receptor (CAR), as bait, two-hybrid screen-
ing identified SHP as an interacting factor (210). SHP is a
unique orphan nuclear receptor that lacks a conserved DNA-
binding domain but contains a receptor-interacting domain
and a repressor domain (211). SHP is known to inhibit trans-
activation activity of RAR, CAR, HNF4�, estrogen receptor
� and �, PPAR, and thyroid hormone receptor (211–215).
Thus, SHP is a promiscuous inhibitory heterodimer partner
of nuclear receptors. SHP is closely related to DAX-1, a nu-
clear receptor expressed in steroidogenic tissues. DAX-1 was
originally identified in X-linked adrenal hypoplasia con-
genita patients who have deletions or mutations of DAX-1
(216–218). Two mechanisms have been suggested for repres-
sion of nuclear receptor activity by SHP. First, SHP competes
with other nuclear receptors for coactivators such as steroid
receptor coactivator families of steroid receptor coactivators.
Second, SHP represses nuclear receptors directly by its re-
pressor function located at the C-terminal region (215). SHP
transcription is stimulated by monomeric nuclear receptors
bound to DNA, i.e., SF-1 and FTF (205). Because SHP interacts
with FTF, SHP inhibits its own transcription by inhibiting
FTF activity (155). Hence, FTF, FXR, and SHP tightly regulate
the expression of SHP in the liver, similar to the regulation
of CYP7A1 gene by these receptors. It would be interesting
to disrupt the Shp gene or overexpress Shp in the mouse liver
to verify the genes and pathways regulated by SHP (see Note
Added in Proof, no. 2). SHP mRNA levels are relatively high
in mouse livers but lower in rat livers. This may explain a
much higher CYP7A1-specific activity in the rat than in
mouse livers.

Recently, Goodwin et al. (3) reported that the FXR agonist,
GW4064, repressed CYP7A1 mRNA but stimulated SHP
mRNA expression in rats. They found an inverse relationship
between CYP7A1 and SHP mRNA expression levels. FXR
has been shown to bind mouse and human SHP promoter
and stimulates SHP reporter activity (2, 3). In Fxr�/� (163)
and in Cyp7a1�/� mice (2), SHP expression is reduced.
Furthermore, SHP represses CYP7A1 in a dose-dependent
manner by inhibiting the transactivating activity of FTF
(LRH) (2, 3, 155). This is analogous to DAX-1 inhibition of
SF-1 in steroidogenic tissues. Recently, Chen et al. (155) re-
ported that feeding CDCA to rats had no effect on SHP
mRNA expression in livers. However, overexpression of FXR
in the presence of CDCA stimulated SHP mRNA expression
levels in HepG2 cells. Species differences in SHP expression
in response to bile acids may explain these descriptions. SHP
mutations have been identified in obese Japanese with early
onset of diabetes (219). It was suggested that SHP was a
MODY gene that might regulate HNF4� activity and energy
metabolism in the pancreas. A cascade mechanism of FXR
regulation of CYP7A1 involving SHP will be described in
Section IV.A.

8. PXR (NR1I2). Mouse PXR or the human ortholog, steroid
xenobiotic receptor, is a promiscuous xenobiotic receptor
that is activated by structurally unrelated steroids, xenobi-

otics, and drugs, such as phenobarbital and antibiotics, and
expressed predominantly in the liver and intestine (220, 221).
PXR is most closely related to CAR, and shares common
ligands and function. PXR ligands also induce the CYP3A
family of cytochrome P450 enzymes. CYP3A4 is the most
abundant cytochrome P450 isozyme expressed in human
liver and intestine and metabolizes about 60% of clinical
drugs in the liver and intestine (222). Dexamethasone, preg-
nenolone 16�-carbonitrile (PCN), rifampicin, phenobarbital,
and other drugs activate PXR, which forms a heterodimer
with RXR and binds to the promiscuous response elements
consisting of DR3, DR4, DR5, or ER6 in the CYP3A genes.
Recently, LCA has been identified as a ligand of PXR (221,
223). It was suggested that PXR might function as a bile acid
sensor that induced CYP3A4 to convert LCA to a hydrophilic
bile acid, hyodeoxycholic acid (HDCA). PXR also induces the
OATP2 (SLC21A6) in sinusoidal membrane. This was consis-
tent with the observation that PCN did not affect bile acid
secretion in Pxr�/� mice (224) and that Pxr null mice
developed inflammatory response and liver damage upon LCA
treatment. However, Pxr null mice were responsive to LCA
induction of CYP3A (225). These results suggest that LCA in-
duces OATP2, which transports LCA into hepatocytes to in-
duce PXR to inhibit CYP7A1 transcription (225). Thus, PXR may
play a protective role against hepatotoxicity and cholestasis
induced by LCA (225). This is consistent with a previous report
by Chiang et al. (226) that PCN and dexamethasone strongly
inhibit CYP7A1 activity and protein expression in rat livers.
Phenobarbital is known to stimulate CYP7A1 activity (226, 227).
However, the mechanism by which PXR inhibits and pheno-
barbital induces CYP7A1 expression is not known at present.
PXR also induces multidrug-resistant protein 1 (MDR1) and
MRP2, which transport sulfate-conjugated tauco-CDCA and
tauro-LCA to canaliculi (228).

C. Nuclear receptor regulation of cholesterol homeostasis

Figure 4 illustrates the central roles LXR and FXR play in
coordinate regulation of bile acid synthesis, transport, and
absorption in the liver and intestine, and cholesterol metab-
olism in the liver and peripheral tissues. When cholesterol
levels increase in hepatocytes, oxysterols activate LXR�,
which stimulates the conversion of cholesterol to bile acids
by inducing CYP7A1 transcription. LXR induces SREBP-1c to
stimulate triglyceride synthesis by inducing genes involved
in fatty acid synthesis. LDL receptor, HMG-CoA reductase,
and other genes in cholesterol synthesis pathway may be also
induced. LXR also induces genes involved in lipoprotein
metabolism, including LPL, CETP, and PLTP.

Dietary cholesterol is absorbed into the enterocytes, likely
by protein-mediated transporters (229–231). LXR induces
ABCA1 in peripheral tissues for efflux of cholesterol and
phospholipids. ABCA1 has been implicated in cholesterol
efflux in the intestine (139). Thus, LXR plays a critical role in
regulating cholesterol homeostasis by 1) stimulating CYP7A1
transcription to convert cholesterol to bile acids; 2) facilitat-
ing the efflux of cholesterol from peripheral tissues and in-
testine by inducing ABCA1/ABCG1 (141, 232); and 3) reg-
ulating lipoprotein metabolism by inducing CETP and LPL.

Increases in bile acid synthesis and pool size stimulate
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FXR, which inhibits CYP7A1 to decrease bile acid synthesis
but stimulates BSEP expression to excrete bile acids into bile.
Cholesterol is excreted into bile by an unknown mechanism,
possibly involving ABCG5/G8, and MDR2 excretes phos-
phatidylcholine into bile to form mixed micelles with bile
acids. In the intestine, bile acids are reabsorbed into entero-
cytes by sodium-dependent bile acid transporter (ASBT,
SLC10A2) located in the brush border membrane and bind

to IBABP, which may facilitate bile acid efflux by the trun-
cated ASBT (tASBT), located in the basolateral membrane, to
portal circulation (233). FXR inhibits the expression of NTCP
in sinusoidal membrane to reduce reabsorption of bile salts
into hepatocytes. Therefore, FXR may play major roles in bile
acid metabolism, reverse cholesterol transport, and protect
hepatocytes against cholestasis by 1) feedback inhibition of
bile acid synthesis by CYP7A1; 2) stimulation of bile acid
efflux from hepatocytes by BSEP; 3) inhibition of bile acid
uptake into hepatocytes by NTCP; and 4) regulation of re-
verse cholesterol transport by inducing ApoCII and PLTP.

It should be emphasized that cholesterol metabolism in
rats and mice is very different from humans and other spe-
cies. Rats and mice have very little LDL and do not express
CETP. Stimulation of CYP7A1 by a high-cholesterol diet is
observed only in rats and some inbred strains of mice. The
bile acid pools of rats and mice are more hydrophilic, con-
taining mostly muricholic acids, and thus less effective in
activation of FXR. Therefore, the positive effect of LXR may
dominate over the negative effect of FXR to explain the high
efficiency in conversion of cholesterol to bile acids in the rat
and mouse. In contrast, a high-cholesterol diet does not stim-
ulate, but represses CYP7A1 in the monkey, guinea pig, rab-
bit, and human. In the latter species the inhibitory effect of
FXR may dominate over the stimulatory effect of LXR to
explain the inhibition of CYP7A1 gene transcription by cho-
lesterol. Therefore, cholesterol may indirectly activate FXR
by stimulating the synthesis of bile acids. Thus, rats are
resistant to diet-induced hypercholesterolemia, whereas rab-
bits, hamsters, and some humans develop hypercholester-
olemia on a diet high in cholesterol.

IV. Molecular Mechanisms of Regulation of Bile
Acid Metabolism

Bile acid feedback regulation of bile acid synthesis has
been studied for more than three decades. Despite that, the
molecular mechanism of bile acid feedback is poorly under-
stood. During the last decade, cloning of the CYP7A1 cDNAs
and the genes has contributed significantly to our under-
standing of the molecular mechanism of bile acid synthesis
and regulation (1). Several mechanisms have since been pro-
posed to explain bile acid feedback regulation of CYP7A1
transcription. The receptor-mediated mechanism originally
proposed by Chiang and Stroup (109) is based on the finding
that hormone response element-like repeats are present in
the BAREs identified in the CYP7A1. Bile acids have been
shown to activate protein kinase C (PKC) signaling pathway
(234) and inflammatory cytokines (235, 236). A receptor-
mediated mechanism might regulate bile acid synthesis un-
der physiological conditions, whereas a cell-signaling mech-
anism possibly provides a rapid response to stress that is
induced by bile acid overload (such as in cholestasis). These
two mechanisms may converge to down-regulate the genes
through the same transcription factors.

A. Nuclear receptor-mediated mechanism

Chiang and associates (1, 109) proposed that bile acids
might bind to and activate a nuclear bile acid receptor,

FIG. 4. LXR and FXR regulation of bile acid synthesis, transport, and
absorption, as well as cholesterol homeostasis in the liver. In the liver,
cholesterol is converted to bile acids (BA) and also oxidized to oxy-
sterols by sterol hydroxylases. Oxysterols activate LXR, which in-
duces transcription of genes for CYP7A1 and SREBP-1c. SREBP
induces genes involved in fatty acid synthesis, LDL receptor, HMG-
CoA reductase, and other genes in cholesterol synthesis. LXR also
induces CETP and LPL involved in lipoprotein metabolism. Bile acids
activate FXR and inhibit CYP7A1 and NTCP transcription. On the
other hand, FXR induces the expression of bile salt export pump
(BSEP), which excretes bile acids into bile. Cholesterol is excreted into
bile by an unknown mechanism. Phosphatidylcholine (PC) is excreted
by MDR2 to bile canaliculi. Cholesterol, PC, and bile acids form mixed
micelles and are stored in the gallbladder. Bile acids secreted from the
gallbladder are reabsorbed in the intestine by ASBT located in the
brush border membrane. FXR induces ileum bile acid binding protein
(IBABP), which binds and facilitates the efflux of bile acids by trun-
cated ASBT (tASBT) located in the basolateral membrane into portal
circulation to hepatocytes where bile acids are taken up by NTCP.
LCA, a secondary bile acid formed in the intestine, induces OATP2
and transports LCA into hepatocytes for conversion to hyodeoxycholic
acid by CYP3A, which is induced by PXR (not shown). Dietary cho-
lesterol is absorbed into the intestine by an unknown mechanism. In
the intestine, LXR induces ABCG5/G8 transporters and perhaps also
ABCA1, which effluxes sitosterol (plant sterol) and cholesterol, re-
spectively, from enterocytes. In peripheral tissues, oxidized LDL is
taken up by SR-A1, and LXR induces ABCA1/G1, which effluxes
cholesterol and phospholipids to form pre-HDL with ApoAI/ApoE.
FXR induces PLTP, which transfers phospholipids from VLDL and
LDL to pre-�HDL and HDL3 to form HDL3 and HDL2, respectively.
LXR induces CETP, which exchanges triglycerides for cholesterol
between HDLs and other lipoproteins.
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which interacts with a bile acid-responsive protein that
transactivates CYP7A1 gene transcription. Interaction be-
tween bile acid receptor and bile acid-responsive protein
might prevent a transactivating factor from binding to the
BARE, thus inhibiting CYP7A1 transcription. It was fur-
ther proposed that bile acid receptors and bile acid re-
sponsive proteins might be liver-enriched transcription
factors or orphan nuclear receptors (1, 110). Identification
of FXR as a bile acid receptor supports this mechanism.
The comparison of nucleotide sequences of the BAREs
identified in rat and human CYP7A1 (110, 155), rat and
human CYP8B1 (157, 184), and human CYP27A1 show
similar characteristics: they all contain overlapping bind-
ing sites for HNF4� and FTF. These two nuclear receptors
may differentially regulate these genes by competing for
binding to the BAREs. The relative expression levels of
these two nuclear receptors in liver may also regulate these
genes under different physiological conditions.

Figure 5 illustrates the receptor-mediated mechanisms of
bile acid regulation of gene transcription based on the orig-
inal mechanism proposed by Chiang and co-workers (1, 109,

110) and modified according to the FXR/SHP cascade mech-
anism proposed recently (2, 3, 155, 157). CDCA-activated
FXR binds to the IR1 sequences and stimulates IBABP, BSEP,
PLTP, and SHP transcription in the liver. SHP then interacts
with FTF to repress CYP7A1, or with HNF4� to repress
CYP8B1 and CYP27A1 transcription. It should be noted that
bile acids also induce FTF, which directly inhibits genes in
bile acid synthesis in the liver (155, 157, 184) but stimulates
MRP3 gene in the intestine (209). Figure 5 also shows an
SHP-independent mechanism by which the PXR activated by
LCA represses CYP7A1 transcription by an unknown mech-
anism. On the other hand, PXR induces OATP2 to facilitate
the transport of LCA to hepatocytes to induce CYP3A family
enzymes that convert LCA to hyodeoxycholic acid. Vitamin
D receptor has recently been identified as a LCA-activated
receptor, which may also regulate bile acid synthesis (see
Note Added in Proof, no. 3). Therefore, bile acids regulate bile
acid synthesis, transport, absorption, and detoxification in
the liver and intestine. It is intriguing that bile acids activate
a very specific receptor, FXR, which induces a nonspecific,
negative receptor, SHP. SHP then interacts with other non-
specific receptors (FTF and HNF4�) and specifically inhibits
the genes regulated by bile acids. The unique structures of
BAREs in bile acid-repressed genes must be critical to pro-
vide specificity for bile acid inhibition. Tissue-specific ex-
pression of SHP, HNF4�, and FTF may also provide speci-
ficity for this cascade mechanism of gene transcription.
Further study by knocking out the shp gene in mice to study
bile acid feedback regulation of genes transcription would
provide more convincing evidence for the FXR/SHP-depen-
dent mechanism (see Note Added in Proof, no. 2). In addition,
bile acids may down-regulate a gene by SHP-independent
mechanism, i.e., reducing HNF4� expression level and stim-
ulation of FTF (184). When bile acid pool in the liver is
reduced, increasing HNF4� expression and decreasing
FTF expression would allow HNF4� to bind to the BARE
and stimulate gene transcription. When bile acid pool in-
creases, HNF4� expression is reduced and FTF is increased
to allow FTF to bind to the BARE and down-regulate gene
transcription.

B. Cell-signaling mechanism

Figure 6 illustrates a cell-signaling mechanism based on
the PKC signaling pathway proposed by Stravitz and col-
leagues (234, 237), bile acid activation of inflammatory
cytokines by Miyake et al. (235), and the MAPK signal
transduction pathway by De Fabiani et al. (186). Bile acids
mimic phorbol esters, which activate PKC and lead to
activation and phosphorylation of c-Jun N-terminal kinase
1, 2 (JNK1, 2) (238). It has been suggested that phosphor-
ylated c-Jun might form a transcriptional repressor com-
plex with a positive transcription factor and prevent it
from activating CYP7A1. This repressor complex has not
been identified, however. A recent study from the same
laboratory showed that c-Jun could induce SHP by binding
to an AP1 site in the promoter (239). Therefore, the PKC
pathway and the nuclear receptor-mediated mechanism
may converge to regulate a common receptor, SHP. Bile
acids have been shown to induce inflammatory cytokines

FIG. 5. Nuclear receptor-mediated mechanism. FXR and PXR are
bile acid receptors. SHP, HNF4�, and FTF are bile acid-responsive
proteins that are regulated by bile acids. FXR/RXR� binds to the IR1
sequence in IBABP, BSEP, PLTP, and SHP gene and activates their
gene transcription. FXR indirectly represses gene transcription by
induction of a negative receptor, SHP, which interacts with HNF4�
or FTF and represses CYP7A1, CYP8B1, and CYP27A1 transcription.
Bile acids also induce FTF, which interact with SHP or functions as
a negative regulator that inhibits human CYP7A1, rat CYP8B1, and
human CYP27A1 transcription. Bile acids also inhibit HNF4� gene
transcription and contribute to the inhibition of HNF4�-activated rat
and human CYP8B1 and human CYP27A1. In SHP-independent
mechanism, LCA activates PXR, which binds to an ER6 sequence in
CYP3A and OATP2 genes. PXR inhibits CYP7A1 transcription by an
unknown mechanism.
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in Kupffer cells (hepatic macrophages) (235). Induction of
cytokine expression in macrophages was correlated to bile
acid inhibition of CYP7A1 mRNA expression in hepato-
cytes. Miyake et al. (235) suggested that cytokines induced
by bile acids in hepatic macrophages traverse the sinu-
soidal surface and enter the parenchyma cells to inhibit
CYP7A1 expression. The downstream transcription factors
that are involved in this mechanism have not been iden-
tified. More recently, De Fabiani et al. (186) reported that
bile acids could suppress CYP7A1 transcription by reduc-
ing transactivation activity of HNF4� by a MAPK path-
way, including activation of MAPK kinase kinase 1, stress-
activated protein kinase kinase/MAPK kinase kinase, and
JNK1/2 (240). De Fabiani et al. (186) proposed that phos-
phorylation of HNF4� by JNK might reduce HNF4� trans-
activation of CYP7A1. This pathway allows rapid adoption
to sudden increase of bile acids by inhibiting bile acid
synthesis. It remains to be verified that the JNK pathway
phosphorylates HNF4� and that phosphorylated HNF4�
lost its ability to activate gene transcription. Nevertheless,
this mechanism is consistent with the critical role that
HNF4� plays in mediating bile acid repression of CYP8B1
and CYP27A1 gene transcription. Inhibition of HNF4�
gene transcription and its transactivating activity by phos-
phorylation reduce transcription of these genes involved
in bile acid synthesis.

V. Drug Therapies Targeted to Nuclear Receptors
and Genes in Bile Acid Metabolism

Identification of nuclear receptor LXR and FXR as regu-
lator of genes in bile acid and cholesterol metabolism has
provided potential new targets for screening cholesterol-
lowering drugs by manipulating bile acid synthesis, trans-
port, and absorption (Table 2) (241). In principle, stimulation
of bile acid synthesis, increasing biliary bile acid excretion,
and reducing bile acid and cholesterol reabsorption in in-
testine would lead to cholesterol lowering. In addition, these
potential drugs also could be used for the treatment of liver
diseases, such as cholestasis, cholelithiasis, and cirrhosis.

A. Bile acid synthesis

Gene transfer techniques have been used to overexpress
CYP7A1 activity in the liver. Adenovirus-mediated transfer
of CYP7A1 to LDL receptor-deficient mice causes a dose-
dependent decrease of plasma LDL (242). Infection of re-
combinant adenovirus containing human CYP7A1 increases
CYP7A1 activity in mice (243). Introducing CYP7A1 by asia-
loorosomucoid-polylysine conjugate into mouse hepatocytes
decreases plasma cholesterol (244). Overexpression of
CYP7A1 in primary human hepatocytes and HepG2 cells
activates the classic pathway of bile acid synthesis and de-
creases HMG-CoA reductase and ACAT, but increases LDL
receptor and cholesterol ester hydroxylase mRNA and ac-
tivity (245). It is interesting that over-expression of CYP7A1
in transgenic mice increases VLDL assembly and secretion
without inducing hyperlipidemia (246). It was suggested that
induction of the LDL receptor by overexpression of CYP7A1
reduced serum cholesterol. Furthermore, overexpression of
CYP7A1 blocked lithogenic diet-induced atherosclerosis and
gallstone formation in the atherosclerosis and gallstone-
susceptible C57BL/6 strain of mice (247). These experiments

FIG. 6. Cell signaling mechanism. Bile acids activate PKC, which
initiates a MAPK signal transduction pathway to phosphate JNK1,
2. Bile acids also induce inflammatory cytokines, TNF� and IL-1,
which also activate MAPK cascade involving MEEK1 and SEK/
MKK4, and phosphorylate JNK1/2. JNK1/2 phosphorylates c-Jun,
which may interact with FTF (or other unknown factors) and repress
CYP7A1. The phosphorylated c-Jun may induce SHP, which interacts
with FTF and represses CYP7A1 transcription as in the nuclear
receptor-mediated mechanism. JNK1/2 may phosphorylate HNF4�
and inhibit its transactivation activity, leading to repression of
CYP7A1 transcription. MEKK1, MAPK kinase kinase 1; SEK, stress-
activated protein kinase kinase; MKK4, MAPK kinase kinase; JNK,
c-Jun N-terminal kinase.

TABLE 2. Potential drug therapies targeted to nuclear receptors
and bile acid metabolism

A. Bile acid synthesis
Gene transfer: CYP7A1 and CYP27A1 reduce serum

cholesterol; prevent atherosclerosis and gallstone formation
(242–248)

FXR antagonists: should induce CYP7A1, CYP8B1, and NTCP,
and inhibit SHP

LXR agonists: induce CYP7A1 and CYP8B1 (via SREBP) in
rats (139)

Rexinoids: induce FXR and LXR, but increase serum
triglycerides (139)

B. Bile acid transport
FXR agonists: induce BSEP and IBABP; repress NTCP (3, 162,

249)
ASBT inhibitors: inhibit bile acid reabsorption (241, 250, 251)
Bile acid sequestrants: inhibit bile acid reabsorption (252, 253)

C. Reverse cholesterol transport
FXR agonists: induce PLTP and ApocII; reduce triglycerides

(162)
LXR agonists: induce CETP, ABCA1/ABCG1, and LPL; increase

triglycerides (12, 135)
D. Cholesterol absorption

Cholesterol absorption inhibitors: reduce intestine cholesterol
absorption (241, 255, 256)

Rexinoids: induce intestine ABCA1/ABCG1 (139)
LXR agonists: induce intestine ABCA1/ABCG1 (139)
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demonstrated the principle that increasing CYP7A1 expres-
sion would lead to cholesterol lowering and prevention of
atherosclerosis. Overexpression of CYP27A1 in HepG2 cells
increases bile acid synthesis, HMG-CoA reductase, and
ACAT activity (248). However, in Chinese hamster ovary
cells, overexpression of Cyp27A1 decreases HMG-CoA re-
ductase activity. It appears that overexpressing Cyp27A1
causes different responses in different cell types. Increas-
ing 27-hydroxycholesterol levels in peripheral cells may
down-regulate cholesterol synthesis and induces LXR,
which in turn induces ABCA1/ABCG1 expression for cho-
lesterol efflux from peripheral cells (131). Therefore,
CYP27A1 may have antiatherogenic activity (248). These re-
sults suggest that CYP7A1 and CYP27A1 are potential ther-
apeutic targets for lowering serum cholesterol and prevent-
ing atherosclerosis.

Therapies targeted to LXR and FXR would be ideal for
drug development because nuclear receptors are activated
by natural and synthetic ligands, which could be identified
by high-throughput screening. FXR antagonists should
dampen bile acid feedback inhibition and stimulate CYP7A1
transcription and result in increasing conversion of choles-
terol to bile acids. However, it may be argued that an increase
in bile acid synthesis and pool size would lead to stimulation
of FXR, which subsequently reduces bile acid synthesis. This
is compensated by FXR stimulation of BSEP for excretion of
bile acid from hepatocytes. LXR agonists may stimulate
CYP7A1 transcription in rats and mice (139) but may have
much less effect on human CYP7A1. Therefore, FXR antag-
onists may be more effective than LXR agonists in stimulat-
ing bile acid synthesis and reducing serum cholesterol levels.
Individual differences in response to a high-cholesterol diet
may have different responses to FXR antagonists and LXR
agonists. Rexinoids may stimulate FXR, LXR, PPAR�, and
other nuclear receptors heterodimerized with RXR (139). Be-
cause the effect of FXR may dominate over the effect of LXR
in humans, rexinoids may inhibit bile acid synthesis (140).

B. Bile acid transport

FXR agonists should increase BSEP and reduce NTCP
expression (3). However, stimulation of BSEP expression to
excrete bile acids may not subsequently stimulate bile acid
synthesis. FXR agonists also should stimulate IBABP expres-
sion in enterocytes, thus protecting intestine cells from the
toxicity of bile acids. Bile acids and FXR agonists have been
shown to reduce serum triglyceride level (162, 249). FXR
agonists may be ideal drugs for treatment of cholesterol
gallstone disease, hypertriglyceridemia, and cholestatic liver
diseases. The effectiveness of bile acid sequestrants in inter-
rupting bile acid reabsorption and stimulating bile acid syn-
thesis suggests that the inhibitor of intestinal ASBT would be
effective in reducing bile acid reabsorption. Several ileal bile
acid transport inhibitors have been developed recently for
cholesterol lowering (241, 250, 251). New bile acid seques-
trants have been developed recently for improving efficacy
and reducing gastrointestinal side effects (252, 253). The pos-
sible hypertriglyceridemic effects of these drugs need to be
evaluated.

C. Reverse cholesterol transport

FXR agonists may increase HDL levels by inducing PLTP,
which facilitates the synthesis of HDLs for reverse cholesterol
transport, and by inducing ApocII (162), which activates LPL
for hydrolysis of triglycerides in VLDL and CM. This may
explain the hypotriglyceridemic effect of FXR agonists (162).
LXR agonists may induce reverse cholesterol transport by in-
ducing CETP, LPL, and ABCA1/G1 (12). Thus, LXR agonists
may reduce serum cholesterol and intestinal cholesterol ab-
sorption by increasing cholesterol efflux from enterocytes.
However, most of the cholesterol absorbed in the intestine is
retained in the body, and cholesterol efflux from enterocytes
does not contribute significantly to whole-body cholesterol
homeostasis in humans. A potential problem for using LXR
agonists is hypertriglyceridemia induced by induction of
SREBP-1c, which stimulates fatty acid and triglyceride synthe-
sis (135). A combination therapy of LXR and FXR agonists and
compounds that activate both LXR and FXR, if obtained, may
be used as an alternative therapy for treating hypercholester-
olemia without causing hypertriglyceridemia.

D. Cholesterol absorption

About 50% of dietary cholesterol is absorbed in the intes-
tine in humans by selective processes, most likely involving
protein/receptor-mediated transport (229, 231, 254). In prin-
cipal, inhibition of cholesterol absorption in the intestine
would be an attractive strategy for reducing serum choles-
terol. Several cholesterol absorption inhibitors have been
developed (241, 255). Dietary supplement of margarine con-
taining sitostanol esters (benetol) may inhibit cholesterol ab-
sorption and reduce serum cholesterol in a hypercholester-
olemic population (256). Increasing cholesterol efflux in
intestine also may reduce net intestinal cholesterol absorp-
tion. However, this process varies widely among different
species and individuals. Rexinoids have been shown to stim-
ulate cholesterol efflux from the intestine by inducing Abca1
transporter in mouse intestine (139). LXR agonists should
have similar effects on cholesterol efflux.

VI. Conclusion and Future Perspectives

The cloning of the major regulatory genes in the bile acid
biosynthetic pathways in the last 10 yr has contributed signif-
icantly to our understanding of the mechanism of regulation of
bile acid synthesis and cholesterol homeostasis. These advances
have led to the recent discovery of bile acids and oxysterols as
signaling molecules and nuclear receptors LXR and FXR as
oxysterol and bile acid receptors, respectively. It is predicted
that many bile acid target genes that are involved in lipid
metabolism will be identified. Further research on the complex
mechanism of gene regulation by bile acids and oxysterols, and
identification of endogenous ligands for nuclear receptors in-
volved in regulation of lipid metabolism and homeostasis, will
help elucidate the mechanism of pathogenesis of several met-
abolic diseases (see Note Added in Proof, no. 3). New drugs
targeted to nuclear receptors and bile acid-regulated genes for
treatment of hypercholesterolemia, hypertriglyceridemia, ath-
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erosclerosis, cholesterol gallstone disease, and cholestatic liver
disease will be developed in the foreseeable future.

Note Added in Proof

Several papers, which are very important for this review, appeared
after submission of this manuscript.

1. A family of CYP7A1 deficiency has recently been identified (259).
Patients have hyperlipidemia, premature coronary and peripheral vas-
cular disease, and premature gallstone disease. A double deletion (TT)
in codon 413 results in a frame shift that converts a Leu to Arg, followed
by a premature stop codon. The mutation is located in the putative
sterol-binding sites of cytochrome P450 enzymes and results in a trun-
cated protein of 413 amino acid residues devoid of the heme-binding
domain. Patients are resistant to stain and have markedly reduced bile
acid synthesis, and compensatory increase of CYP27A1 activity of the
alternative pathway. However, the severe malnutrition phenotypes
observed in Cyp7a1-null mice were not present in these patients.

2. Mice deficient of SHP have been obtained (260, 261). These mice
appear normal except mild defects in bile acid and cholesterol homeo-
stasis, and increase of bile acid synthesis, which is expected due to
lacking SHP inhibition of CYP7A1. Surprisingly, these mice still re-
sponded to bile acid feedback inhibition when fed bile acids. Studies
confirmed that SHP-independent mechanisms, such as bile acid activa-
tion of PXR and JNK pathways, were involved in bile acid feedback
regulation of bile acid synthesis.

3. Vitamin D receptor (VDR) has recently been identified as the third
bile acid receptor (262). VDR is activated by LCA at much lower con-
centrations (ED50 � 8 �m) than PXR. This receptor may be an intestinal
bile acid sensor that activates CYP3A4 in liver and intestine to detoxify
LCA and protect against colon cancer.
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